
DistriNet

Sandboxing JavaScript

Nick Nikiforakis & Steven Van Acker

SECAPPDEV 2013

DistriNet

Overview

2

Part 1: State-of-practice usage of 3rd
party JavaScript

Nick Nikiforakis

Part 2: Variety of policies and
enforcement techniques for sandboxing
JavaScript

Steven Van Acker

DistriNet

Part 1: State-of-practice usage of
3rd party JavaScript

Sandboxing JavaScript

SECAPPDEV 2013

DistriNet

Who am I ?

Nick Nikiforakis
nick.nikiforakis@cs.kuleuven.be

http://www.securitee.org

PhD researcher @ KU Leuven
Experience with the analysis of large-scale
online ecosystems, from a security and
privacy perspective
Bypassed:

Chrome’s Anti-XSS mechanism
McAfee’s Social Protection

4

mailto:nick.nikiforakis@cs.kuleuven.be

DistriNet

Who needs sandboxing anyway?

 If you only trust scripts from well-known
vendors, you don’t have anything to
worry about… right?

 Wrong!

There is no unhackable vendor

Scripts can include other scripts… from
wherever

…

 5

DistriNet

You are what you include…

Nikiforakis et al. “You Are What You Include:
Large-scale evaluation of remote JavaScript
Inclusions”, CCS 2012

6

DistriNet

Remote JS-Providing hosts

Given that sites include remote JS, which third-
party vendors do they currently trust?

What is the maintenance profile of each JS
provider?

Could a provider be attacked as a way of reaching a
harder-to-get target?

Are there attack vectors, in relation to remote
inclusions, that we were not aware of ?

How can one protect his web application?
Are coarse-grained sandboxes sufficient?

7

DistriNet

Motivation…

32 days…

8

DistriNet

Data Collection

Discovering remote JavaScript inclusions
(aka trust relationships)

Alexa Top 10,000

Up to 500 pages from each

Pages chosen by Bing

• Query “site:google.com”

9

DistriNet

Crawling results

Crawled over 3,300,000 pages belonging
to the Alexa top 10,000

Discovered:

8,439,799 remote inclusions

301,968 unique JS files

20,225 uniquely-addressed remote hosts

• Addressed by domain-name

• Addressed directly by IP address

10

DistriNet

How many remote hosts?

11

DistriNet

Remote IP inclusions

0.27% of the inclusions found were
addressing a remote host by its IP
address

299 Alexa domains addressing 324 unique
IP addresses

Most of them in China (35.18%)

Only 65 unique cases of cross-country IP-
based inclusions

12

DistriNet

Popular JavaScript libraries

13

DistriNet

Popular JavaScript libraries

14

DistriNet

Security analysis

Are sites trusting more, or less remote
hosts as time goes by?

Evolution of external JavaScript inclusions

Are the ones who are currently trusting,
worthy of their trust?

15

DistriNet

Evolution of inclusions

Using archive.org, crawl the page that is:

a) Available throughout the years

b) Has the most inclusions in our current dataset

16

DistriNet

Designing a quality-of-maintenance
metric

Assumption: Unkempt third-party providers are easier to
attack

Availability: DNS not expired, publicly-routable IP address
Cookies (at least one):
• HttpOnly?
• Secure?
• Path & Expiration?

Anti-XSS & Anti-Clickjacking headers?
Cache control
SSL implementation
• Weak ciphers
• Valid certificates
• Strict Transport Protocol

Outdated web servers?

17

DistriNet

Weights and Training

Supervised learning needs a training-set, a
ground truth

We had none

Common logic:
If you expect site A to be more secure than site B,
then the metric should reflect that
Data-sets:
• XSSed
• Defaced
• Banks
• Random sites

18

DistriNet

Results

19

DistriNet

Bad apples

cafemom.com
Invalid SSL certificate
Non-httponly & non-secure cookies
Both HTTP & HTTPS work

criteo.com (included by 117)
Weak SSL ciphers
weak DH key exchange

levexis.com (included by 15)
Invalid SSL certificate

20

DistriNet

Attacks?

In about 8.5 million records of remote
inclusions, is there something that we
didn’t know?

4 Things! 
Cross-user & Cross-network Scripting

Stale domain-based inclusions

Stale IP-based inclusions

Typo-squatting Cross-Site Scripting

21

DistriNet

Cross-user Scripting

<script src=http://localhost/script.js>

133 records were found

131 specified a port (localhost:12345),
always greater than 1024

Attack:

• Setup a web-server, listen to high ports, hack
other users

22

http://localhost/script.js
http://localhost/script.js
http://localhost/script.js
http://localhost/script.js

DistriNet

Cross-network Scripting

<script src=http://192.168.2.3/script.js>
68 of them

Same as before, but now you just need to
be in the same local network

Who is doing that?
akamai.com

virginmobileusa.com

gc.ca (Government of Canada)

23

http://192.168.2.3/script.js
http://192.168.2.3/script.js

DistriNet

Stale domain-based inclusions

What happens when you trust a remote site
and the domain of that site expires?

Anyone can register it, and start serving
malicious JS
Equal in power to the, almost extinct, stored
XSS
• Try proving in court that someone hacked you with

that

56 domains found, used in 47 sites
Some were identified as special cases

24

DistriNet

Shopping spree!

Registered some of the stale domains:

blogtools.us -> goldprice.org (4,779th in
Alexa)

hbotapadmin.us -> hbo.com

Blogtools.us Hbotapadmin.com

Visits 80,466 4,615

Including domains 24 4

Including pages 84 41

25

DistriNet

Stale IP-based remote inclusions

What if the IP address of the host which you
trust for JavaScript, changes?

The including page’s scripts must also change

Do they?

Manual analysis of the 299 pages
39 addresses had:
a) Not changed

b) no longer provided JavaScript
a) In 89.74%, we got a “Connection Timeout”

26

DistriNet

Typosquatting XSS (TXSS)

Typosquatting
registering domains that are mistypes of

popular domains

Serve ads, phishing, drive-by downloads
etc. to users that mistype the domain

Unfortunately… developers are also
humans

<script
src=http://googlesyndicatio.com/...>

27

http://googlesyndicatio.com/...
http://googlesyndicatio.com/...
http://googlesyndicatio.com/...

DistriNet

Examples found…

Googlesyndicatio.com

Unique visitors 163,188

Including domains 1,185

Including pages 21,830

28

DistriNet

Countermeasures

Problems with remote inclusions
A developer can mess up
• Cross-user, cross-network and TXSS

The remote host can mess up
• Low security, expiration of domain names

How to protect one’s self?
i. Sandbox remote scripts

ii. Download them locally

29

DistriNet

Coarse-grained sandboxing

Is it feasible?
What are the current requirements of
legitimate scripts?
Study the top 100

Automatically study each script
• JavaScript wrappers + stack trace

Find out what sensitive resources they access
• Cookies, Storage, Geolocation, Eval,

document.write

Is coarse-grained containment possible?

30

DistriNet

Access to resources

31

DistriNet

Using local copies

Study the frequency of script modifications
Discover overhead for administrator

Top 1,000 most-included scripts (803)
Download every script three consecutive times and
remove the ones that changed all three times

Study the rest for a week

10.21% were modified
6.97% were modified once

1.86% were modified twice

1.83% were modified three or more

96.76% were modified
at most once

32

DistriNet

More treats…

Things not mentioned:
Mistakes with single (/) and double slashes

(//)
• //foo.js VS /foo.js

Mistypes that are already registered and
could be poisoning the including sites

 Some registrars reclaim the domains
that were used in attacks and, after a
while, put them back into circulation
 33

DistriNet

Conclusions

Remote inclusions mean, almost
unconditional, trust

Some trust TOO much

Things can go wrong:
Because of the includer
Because of the includee

4 new attack vectors
“Easy” solutions, like coarse-grained
sandboxing, may not be as effective as hoped
for

34

DistriNet

Over to
Steven!

End of Part 1

35

DistriNet

Part 2: Variety of policies and
enforcement techniques for

sandboxing JavaScript

Sandboxing JavaScript

SECAPPDEV 2013

DistriNet

Who am I ?

Steven Van Acker
Steven.VanAcker@cs.kuleuven.be
Twitter: @StevenVanAcker

PhD researcher @ KU Leuven
Experience with:

large-scale internet research (FlashOver, You
are what you include)
JavaScript sandboxing (WebJail, JSand)
Building/maintaining/attacking secure systems
(OverTheWire.org, CTF)

37

mailto:Steven.VanAcker@cs.kuleuven.be

DistriNet

A view of the world
Example scenarios and policies

38

DistriNet 39

PuppyShelter.com EvilSkeletor.com Visitor

Basic scenario: Skeletor hates puppies

DistriNet 40

PuppyShelter.com EvilSkeletor.com Visitor

Message forum, No JavaScript

No active content
allowed: JavaScript,

Flash, Audio/Video, …

DistriNet 41

PuppyShelter.com EvilSkeletor.com Visitor

Vulnerable message forum

Vulnerable to XSS

XSS

DistriNet 42

PuppyShelter.com EvilSkeletor.com Visitor

Contextual advertising

Third party JavaScript
executing in host page Your Profile

Name:…

Address:…
CC:…

Confidential information
on host page

DistriNet 43

PuppyShelter.com EvilSkeletor.com Visitor

Annoying advertisement

All JavaScript allowed in
an isolated box with

different origin

Puppies are
not cute!!!

Annoying popups!

(alert, geolocation, …)

DistriNet 44

PuppyShelter.com EvilSkeletor.com Visitor

As long as you behave…

Third party JavaScript
executing in host page Your Profile

Name:…

Address:…
CC:…

Confidential information
on host page

Once read, no more
outgoing network access

allowed

DistriNet

Types of policies

45

Policy granularity

From very simple and coarse (JS on/off)

To very complex and fine-grained (disable
network access after cookie-read)

Simple

Coarse

Complex

Fine-grained

DistriNet

Control all the things!
What types of access can we control?

46

DistriNet

Same-origin policy vs. functionality

47

By default, most access is limited by the
same origin policy

<scheme>://<host>:<port>

Examples: XHR, DOM Access, cookies, …

Some functionality is not bound by SOP

Geolocation, alert(), …

DistriNet

HTML 5 sensitive operations

48

DistriNet

HTML 5 sensitive operations

49

DistriNet

HTML 5 sensitive operations

50

DistriNet

HTML 5 sensitive operations

51

DistriNet

HTML 5 sensitive operations

52

DistriNet

HTML 5 sensitive operations

53

DistriNet

HTML 5 sensitive operations

54

DistriNet

Existing solutions and future trends
Where are we, what’s behind us and what’s on the horizon?

55

DistriNet 56

PuppyShelter.com EvilSkeletor.com Visitor

Where to fix the problem?

1. Modifying or
restricting third party

code
2. Modifying the browser

3. Working with existing
tools

DistriNet 57

PuppyShelter.com EvilSkeletor.com Visitor

Where to fix the problem?

1. Modifying or
restricting third party

code

DistriNet 58

PuppyShelter.com EvilSkeletor.com Visitor

Modifying/restricting 3rd party code

Tackle the problem at the source

No direct communication, but through a
proxy

Examples: Caja, FBJS, BrowserShield

DistriNet

JavaScript subsets: Caja

59

DistriNet 60

In JavaScript, there is a beautiful, elegant, highly expressive language that is
buried under a steaming pile of good intentions and blunders.

-- Douglas Crockford

Caja: JavaScript subset

DistriNet

Caja: Capability JavaScript

61

Object capability model

Functionality is encapsulated in objects

Must have a reference to an object to use
its functionality

No reference means no access

Caja enforces an object capability model
on a safe subset of JavaScript

DistriNet

Caja

62

DistriNet

Caja

63

DistriNet

Caja

64

DistriNet

Caja

65

DistriNet

Modifying/restricting 3rd party code

66

Problems:
JavaScript is notoriously difficult to analyze

or verify

Third party code authors can/will not fit
their code into a subset (e.g. eval, with, …)

Because of the proxy: SOP issues
• Existing thirdparty sessions become useless

• Accessing thirdparty API through e.g. XHR is
troublesome

DistriNet 67

PuppyShelter.com EvilSkeletor.com Visitor

Where to fix the problem?

2. Modifying the browser

DistriNet 68

PuppyShelter.com EvilSkeletor.com Visitor

Modifying the browser

DistriNet

Modifying the browser

69

Tackle the problem where it manifests
itself

No need for a JavaScript subset

No problems with SOP

Examples: ConScript, WebJail, AdSentry

DistriNet

Browser modification: WebJail

70

DistriNet

WebJail: Deep aspect weaving layer

71

Inspired by ConScript (Meyerovich & Livshits)

An advice function mediates access for a function

All access-paths go through the advice function

Enforced in the browser, advice is locked away safely

DistriNet

WebJail: architecture

72

DistriNet

Modifying the browser

73

Problem:

Deploying a browser modification to all
browsers on the internet is hard

“Just get the modification adopted by
W3C so all browsers implement it”

DistriNet 74

PuppyShelter.com EvilSkeletor.com Visitor

Where to fix the problem?

3. Working with existing
tools

DistriNet

Use what’s available

75

HTML5 and ECMAScript5 provide new
and powerful functionality

Have been/will be adopted by all browsers

This is the future

Examples: CSP+iframe sandbox, JSand,
Treehouse

DistriNet

Without modifications: CSP+iframe
sandbox, JSand, TreeHouse

76

DistriNet

Generic modus operandi

1) Download third-party script directly to browser

2) Load script in isolated environment

3) Enable controlled access to outside
 Policy determines permitted operations

3rd party

JavaScript

Embedding page

1

2
D

O
M

3

77

DistriNet

Content-Security-Policy

78

Content-Security-Policy (CSP)

Browser-enforced limitation of the
resources used by a web application (e.g.
use JavaScript only from my own origin)

No inline JavaScript allowed

Has a report mode

Supported by most browsers (in W3C)

DistriNet

Iframe sandbox attribute

79

Iframe sandbox attribute

Can load and isolate content within a
unique origin

Can disable all active content like JavaScript

Supported by most browsers (in W3C)

DistriNet

Using CSP+iframe sandbox

80

Used by Google docs/drive for rendering
untrusted content e.g. DOC files

Host page with CSP policy Sandboxed iframe with unique origin

•No inline JavaScript

•JavaScript only from same origin

•myDiv.innerHTML = response

•Full JavaScript allowed

Render request

HTML response

(postMessage communication)

DistriNet

JSand

81

Wraps DOM in direct proxy using
membrane pattern

Intercept all calls to the DOM

JavaScript is executed against this
wrapped DOM

Using strict mode

Inside a with block

DistriNet

TreeHouse

82

Uses webworkers to isolate JavaScript

No DOM inside webworker

Calls to the DOM are forwarded using
postMessage

Policy determines access to resources

DistriNet

What can you do today?

83

DistriNet

What to do today?

84

Be aware of your own applications

Use CSP in report mode to find out what
resources are being used

Lock your web application down

Use Iframe sandboxes

Restrict active functionality in iframes with
third-party content

DistriNet

Need more?

85

Some production solutions are available
today

As HTML5/ECMAScript5 are adopted,
more solutions will emerge

DistriNet

Thank you!
Questions? Answers!

86

DistriNet

Acknowledgements

87

 The work is partially funded by the European FP7 projects
WebSand, STREWS and NESSoS.

With the financial support from the Prevention of and Fight
against Crime Programme of the European Union.

http://www.b-ccentre.be/
https://www.websand.eu/
http://cordis.europa.eu/fp7/home_en.html
http://www.nessos-project.eu/
http://www.strews.eu/

DistriNet

References

88

Nikiforakis et al. “You Are What You Include: Large-scale evaluation of remote JavaScript Inclusions”, CCS
2012
Van Acker et al. “WebJail: Least-privilege integration of third-party components in web mashups”, ACSAC
2011
Agten et al. “JSand: Complete client-side sandboxing of third-party JavaScript without browser
modifications”, ACSAC 2012
Ingram et al. “TreeHouse: JavaScript sandboxes to help Web developers help themselves”, ATC 2012
Reis et al. “BrowserShield: vulnerability-driven filtering of dynamic HTML”, OSDI 2006
Meyerovich et al. “ConScript: Specifying and Enforcing Fine-Grained Security Policies for JavaScript in the
Browser”, S&P 2010
Xinshu Dong et al. “AdSentry: comprehensive and flexible confinement of JavaScript-based
advertisements”, ACSAC 2011

Caja, https://code.google.com/p/google-caja/
Mike west, “Securing the client side: Building safe web applications with HTML5”,
http://parleys.com/#st=5&id=3521
Content Security Policy, http://www.w3.org/TR/CSP/
Iframe sandbox attribute, http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-
element.html
Webworkers, http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

https://code.google.com/p/google-caja/
https://code.google.com/p/google-caja/
https://code.google.com/p/google-caja/
http://parleys.com/
http://www.w3.org/TR/CSP/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

DistriNet

Appendix: Caja

89

DistriNet

Caja

90

DistriNet

Appendix: WebJail

91

DistriNet

WebJail: Firefox 4.0b7 implementation
(Here be dragons!)

Before advice registration After advice registration

92

DistriNet

WebJail: Advice construction: example

93

function makeAdvice(whitelist) {

 var myWhitelist = whitelist;

 return function(origf, obj, vp) {

 if(myWhitelist.indexOf(vp[0])>=0) {

 return origf.apply(obj, vp);

 } else { return false; }

 };
}

adviceFunction = makeAdvice(["hello world", "test"]);
registerAdvice(window.alert, adviceFunction);

DistriNet

WebJail: Evaluation

94

Performance:

Page load-time overhead: 7ms

Function execution overhead: 0.1ms

Security:

Manually inspected that all accesspaths are mediated

Manually inspected that WebJail infrastructure code is safe

Applicability

Injected policies into real-world iframes using a proxy

Facebook application and iGoogle widget: both behave as expected

DistriNet

Appendix: JSand

95

DistriNet

JSand: high-level architecture

96

DistriNet

JSand: SES example

97

DistriNet

JSand: wrapper proxy example

98

DistriNet

JSand: Performance benchmarks

Micro benchmarks
JSand loadtime: 48.5 ms
JQuery loadtime: 1350.6 ms
• Mainly due to AST script rewriter
• JQuery loadtime (w/o AST trans): 598.2 ms

Membrane transition cost: 7.1 µs

Macro benchmarks
Google Maps loadtime: 1432.8 ms
• vs 308.0 ms outside JSand

Google Maps interaction delay: 420.0 ms
• vs 320.2 ms outside JSand

99

